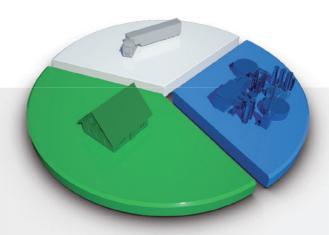


Radiador Novello ECO de Stelrad

¿POR QUÉ PASARSE AL CALOR VERDE?


Ya no podemos seguir mirando hacia otro lado: el clima sufre con el consumo de energía.

Estamos buscando formas de **utilizar la energía de un modo más inteligente.** Teniendo en cuenta que los edificios consumen mucha energía, la mayor parte dedicada a la calefacción y el agua caliente, nuestro sector tiene una gran responsabilidad para innovar en este campo. Con energía renovable y tecnologías eficientes de calefacción y refrigeración, **nuestros edificios podrán reducir en un 60 % sus emisiones de CO₂.**

La Unión Europea contribuye endureciendo progresivamente las leyes relativas al consumo energético en edificios de obra nueva. Y con razón, ya que con un equilibrio energético perfecto, una casa actual consume menos de una décima parte que hace 30 años.

La moderna tecnología de calefacción y la energía renovable son de vital importancia para alcanzar estos ambiciosos objetivos. Para ofrecer un rendimiento óptimo, estos nuevos métodos necesitan sistemas a baja temperatura. Y aquí es donde los radiadores ECO de Stelrad se adaptan de maravilla.

CONSUMO ENERGÉTICO:	*
Transporte	31,3 %
Industria	28,3 %
Edificios	40,4 %
- Calefacción y agua caliente	85,0 %
- Electricidad	15,0 %

Fuente: "Green Paper on Energy Efficiency or Doing More with Less" (marzo 2006)

AHORRE EN SU FACTURA ENERGÉTICA NOVELLO ECO DE STELRAD

Reducción de la factura energética

HASTA UN 10,5%

Mayor calor radiante

HASTA UN 50 %

Mayor temperatura media superficial en la placa delantera

HASTA UN 53 %

Calentamiento más rápido

HASTA UN 23 %

Reducción de la pérdida de energía gracias a la menor radiación de la placa posterior

HASTA UN 8,8 %

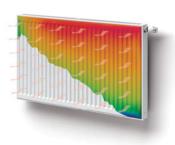
La válvula termostática preajustada ahorra

HASTA UN 6 %

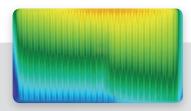
Certificado de calidad revisado por ISSO www.isso.nl/werkvelden/energie-milieu/epa/gelijkwaardigheidsverklaringen/

Válvula que se puede instalar a la derecha o a la izquierda, conexión rápida, mantenimiento de un ambiente agradable con sistemas a temperatura más baja, ideal para energías renovables. Razones más que suficientes para pasarse al calor verde.

MÁS RADIACIÓN = iMÁS CONFORT POR MENOS DINERO!


La transferencia de calor se puede producir de varias formas: por conducción, por convección o por radiación. En la calefacción de viviendas se suele utilizar sobre todo el calor radiante o por convección.

En el caso del **calor por convección**, el aire de una habitación se calienta al pasar la corriente de aire por los elementos de calefacción. El aire caliente asciende, se enfría y vuelve a descender por las paredes. El aire enfriado vuelve a calentarse mediante los elementos de calefacción.

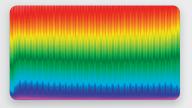

Con el **calor radiante** se emiten rayos infrarrojos que calientan todos los objetos de una estancia de inmediato, independientemente de que corra el aire o haya corriente. El calor radiante genera una temperatura uniforme en todo el entorno, tanto en muebles y paredes como en personas. Los objetos cercanos irradian a su vez este calor, lo que crea una sensación muy agradable. El mejor ejemplo del calor radiante es el sol. Al exponerse al sol, una persona siente los rayos sobre la piel, que se calienta inmediatamente, del mismo modo que el aire a la sombra no está más frío que el que está expuesto a la luz solar. La única diferencia al sentirlo es el calor radiante.

La **transferencia de calor** con un radiador tradicional se produce en un 80 % de media por convección y en un 20 % por calor radiante. Así pues, la agradable sensación de calor de los rayos solares es menor con un radiador tradicional. Pero el radiador ECO introduce ese cambio. En las siguientes fotos se puede apreciar cómo la transferencia de calor por radiación aumenta notablemente con el radiador ECO. La mayor radiación de la placa delantera es considerada especialmente agradable.

RADIADOR ECO*



A los 8 minutos con un caudal del 50 %



A los 8 minutos con un caudal nominal

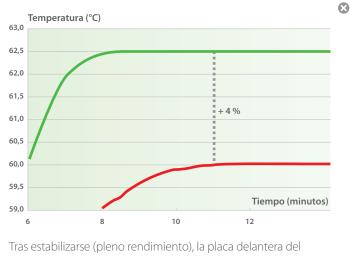
RADIADOR TRADICIONAL*

A los 8 minutos con un caudal del 50 %

A los 8 minutos con un caudal nominal

^{*}Condiciones del ensayo: radiador tipo 22 (altura = 600 mm, longitud = 1000 mm) con un régimen de 70/55/20 °C.

Con estas medidas se observa que, con un caudal nominal del 50 % (adecuado para más de un 90 % de la emisión nominal de calor), la capacidad de irradiación del radiador ECO de los tipos 21 y 22 aumenta en un factor de 1,5 en comparación con la radiación tradicional. **Dependiendo del tipo y de la altura, el radiador ECO puede aportar hasta un 50** % **más de calor radiante.**


El incremento del calor radiante es consecuencia directa de la mayor temperatura media superficial de la placa delantera. En un ensayo realizado en un laboratorio independiente se probaron minuciosamente los radiadores ECO, con los siguientes resultados.

La placa delantera del radiador ECO alcanza una temperatura media de 43 °C a los 2 minutos y de 50 °C a los 3 minutos.

Después de estos mismos intervalos, la placa delantera de un radiador tradicional registra una temperatura media de 28 °C y 35,7 °C, respectivamente.

- Radiador ECO
- Radiador tradicional

Tras estabilizarse (pleno rendimiento), la placa delantera del radiador ECO está hasta un 4 % más caliente en comparación con un radiador tradicional.

- Radiador ECO
- Radiador tradicional

Según la norma EN 12831, en la práctica tan solo hay unos días al año (10, de media) en los que los radiadores utilizan durante más tiempo su capacidad máxima de emisión de calor. Pero incluso en un número tan limitado de días a pleno rendimiento, el radiador ECO ofrece más ventajas.

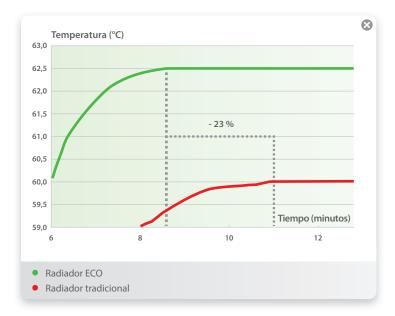
El radiador ECO alcanza a los 2 minutos una temperatura superficial media hasta un 53 % mayor en la placa delantera y una temperatura final más elevada a plena carga, gracias a lo cual irradia hasta un 50 % más de calor radiante.

Al igual que ocurre con el sol, la sensación térmica con un radiador ECO es mayor que con uno tradicional. En otras palabras, con una sensación térmica constante de 20 °C, el mayor calor radiante del radiador ECO permite poner el termostato a algunos grados menos.

Según la BDH (la Asociación Industrial Alemana), por cada grado que baje el termostato se reduce el consumo de energía en un 6 %.

De este modo, los radiadores ECO consiguen un ahorro energético de al menos un 6 % sin reducir la sensación térmica.

CALEFACCIÓN MÁS RÁPIDA iMENOS CO₂!

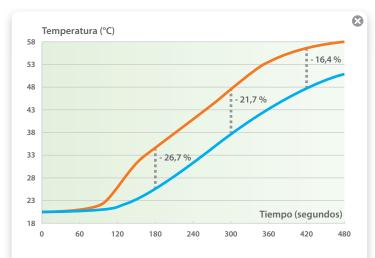

Además de un mayor calor radiante y de una temperatura media más alta en la placa delantera, hay otros factores que reducen considerablemente la factura energética si opta por el radiador ECO.

Gracias a su exclusivo patrón de corriente, el **tiempo de calentamiento** del radiador ECO es bastante más corto que el de uno tradicional.

1. Entrada directa de agua caliente en el canal ascendente del panel delantero. En los radiadores tradicionales, el agua caliente debe

pasar primero por un sistema de tuberías de subida antes de distribuirse de forma paralela por las placas delantera y trasera.

- 2. Distribución posterior del agua caliente: al salir del canal de subida, el agua caliente se distribuye de modo uniforme por los demás canales del panel frontal. Un sistema exclusivo permite que después pase a la placa posterior, donde se reparte de nuevo por todos los canales de agua.
- 3. La placa delantera del radiador ECO alcanza su temperatura máxima de 62,5 °C a los 8,5 minutos. En uno tradicional, la placa delantera se encuentra a sólo 59,3 °C en ese momento y no alcanza su temperatura máxima hasta después de 11 minutos. Por entonces, el radiador ECO lleva ya unos 2,5 minutos a plena temperatura.


Así pues, el panel delantero del radiador ECO alcanza su temperatura máxima hasta un 23 % más rápidamente que uno tradicional. Dicho de otra forma: la placa delantera del radiador ECO se encuentra ya a su temperatura máxima mientras que el radiador tradicional necesita aún más tiempo para seguir calentándose.

^{*}Condiciones del ensayo: radiador tipo 22 (altura = 600 mm, longitud = 1000 mm) con un régimen de 70/55/20 °C.

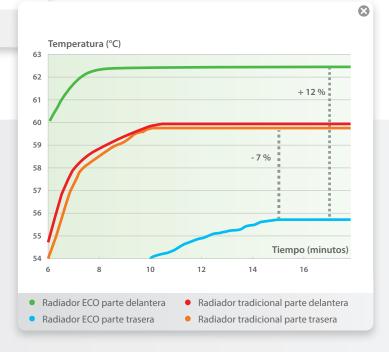
MENOS PÉRDIDA = iMAYOR EFICIENCIA!

Al limitar aún más la pérdida de energía, el radiador ECO consigue aumentar la eficiencia del sistema de calefacción.

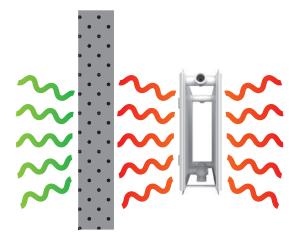
A los 180 segundos, la temperatura media de la placa posterior del radiador ECO llega a los 25,6 °C, mientras que en uno tradicional la temperatura en ese momento es de 35 °C.

Entre 5 y 7 minutos después, el radiador ECO registra 37,6 °C y 47,8 °C, mientras que en un radiador tradicional los valores son de 48,1 °C y 57,2 °C, respectivamente.

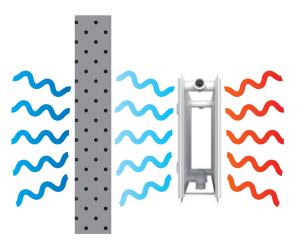
Durante todo el proceso de calentamiento, e incluso después de la estabilización, no sólo está más caliente la placa delantera, sino que la posterior está más fría, lo cual es igualmente importante. Como el panel trasero suele estar orientado hacia la pared, existe el riesgo de que se produzca una pérdida de radiación a través de ésta.


En el gráfico de la izquierda se puede observar la temperatura media de la placa posterior en distintas fases del proceso de calentamiento.

- Radiador ECO parte trasera
- Radiador tradicional parte trasera


El gráfico de la derecha muestra la situación de los dos radiadores una vez estabilizado el sistema de calefacción.

Aun después de la estabilización sigue habiendo una diferencia significativa entre la temperatura media del panel trasero de ambos radiadores.


En el caso del radiador ECO, la temperatura en este punto es hasta un 7 % más baja en comparación con la de un radiador tradicional.

RADIADOR TRADICIONAL

RADIADOR ECO

En el primero apenas hay diferencia entre los paneles trasero y delantero. El calor radiante se transmite a la pared. Si se trata de un muro exterior, el calor se perderá por él, produciéndose así una pérdida de energía.

VÁLVULA TERMOSTÁTICA PREAJUSTADA

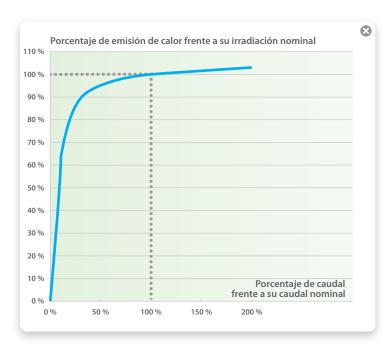
La válvula termostática se preajusta en fábrica en el radiador ECO dependiendo de las dimensiones del mismo. Esto garantiza una producción y un rendimiento óptimo.

En la práctica, es **muy importante realizar una regulación hidráulica óptima de la instalación de calefacción**, en especial si se tiene en cuenta el constante aumento del coste de la energía. Para realizar la regulación hidráulica de la instalación en un edificio nuevo de viviendas, el proyectista o el arquitecto calcula con precisión todos los parámetros necesarios (caudales o producción, acoplamientos o piezas de conexión, ajustes de las válvulas, etc.) mediante los programas informáticos adecuados, mientras que el instalador es el encargado de llevarlos a la práctica.

Suele ocurrir que esta información se acaba perdiendo con el paso del tiempo, por lo que, cuando es necesario hacer modificaciones o reparaciones al realizar reformas, resulta más complicado dar con los ajustes correctos.

Una **solución más práctica** consiste en instalar en los radiadores en fábrica una válvula con un valor Kv preajustado. El principio es relativamente sencillo: con una diferencia dada de presión, la válvula se ocupa de que el flujo de agua o caudal que pasa por el radiador sea el adecuado.

El **preajuste correcto de la válvula** permite que la emisión de calor del radiador se aproxime a su valor nominal. Las válvulas del radiador ECO están configuradas de tal manera que el rendimiento del radiador es igual, o incluso algo mayor, que su rendimiento nominal. Un poco más de rendimiento le da a la calefacción la potencia suficiente o un poco más, acercándose así a su situación nominal o ideal.


Aumentar aún más la producción, como por ejemplo con una válvula no preajustada, apenas aporta potencia extra. En cambio, podría provocar que otros radiadores no recibieran agua caliente suficiente y que, por lo tanto, no pudieran calentar la estancia.

Las válvulas del radiador ECO están configuradas de tal manera que el rendimiento del radiador es igual, o incluso algo mayor, que su rendimiento nominal. Un poco más de rendimiento le da a la calefacción la potencia suficiente o un poco más, acercándose así a su situación nominal o ideal.

Las dimensiones de los radiadores son infinitamente variadas, por lo que es posible su **preajuste en fábrica.** Para asegurarse de que incluso los radiadores pequeños de baja emisión de calor y contenido limitado de agua se puedan regular de una forma óptima, **Stelrad ha escogido dos válvulas:**

- una válvula de ajuste preciso (Heimeier 4369 con tapón amarillo) especial para radiadores pequeños
- una válvula estándar (Heimeier 4368) con cuatro preajustes (blanca, roja, negra y azul) para radiadores de tamaño normal y grande.

En Stelrad, el **ajuste Kv** del radiador se indica claramente por colores:

Referencia	4369	4368	4368	4368	4368
Color	amarillo	blanco	rojo	negro	azul
Preajuste	5,5	2,5	4,5	6	8
Kv (a 1K) preajustado a	0,105	0,215	0,305	0,37	0,40
Regulable desde (a 1K)	0,05 - 0,14		0,12	- 0,40	

Por otra parte, las válvulas de Stelrad son continuas (con ranura cónica), lo que permite regular con precisión el caudal y que haya menor sensibilidad a las averías. Esto contrasta con otras válvulas que son difíciles o imposibles de alinear y que se acaban atascando por las impurezas del agua (como la cal), lo que provoca el mal funcionamiento de la válvula y que el radiador no caliente lo suficiente.

Asimismo, si se tiene en cuenta el consumo de la bomba, el sistema de calefacción con válvulas preajustadas de fábrica hace posible **un ahorro extra de hasta un 20** % en el consumo de electricidad de la bomba.

Los beneficios del preajuste son considerables:

- ahorro de tiempo en la instalación
- un rendimiento óptimo del agua en el radiador
- un mayor rendimiento del sistema gracias a las temperaturas más bajas de retorno

La BDH (la Asociación Industrial Alemana) ha puesto de manifiesto que las válvulas preajustadas en fábrica ejercen una influencia extraordinariamente beneficiosa sobre el balance hidráulico de la instalación de calefacción.

En comparación con sistemas no equilibrados, ofrece un ahorro de energía de hasta un 6 %.

PREAJUSTES APLICADOS

									N	OVE	LLO	ECC)											
ALTURA		30	00			40	00			5	00			60	00			7	00			9	00	
CLASE	11	21	22	33	11	21	22	33	11	21	22	33	11	21	22	33	11	21	22	33	11	21	22	33
400												2,5				2,5			2,5	2,5	5,5	2,5	2,5	2,5
500								2,5	5,5			2,5			2,5	2,5		2,5	2,5	2,5	5,5	2,5	2,5	4,5
600				2,5	5,5			2,5	5,5		2,5	2,5		2,5	2,5	2,5		2,5	2,5	4,5	2,5	2,5	2,5	4,5
700				2,5	5,5		2,5	2,5	5,5	2,5	2,5	2,5		2,5	2,5	4,5	2,5	2,5	2,5	4,5	2,5	2,5	4,5	6
800			2,5	2,5	5,5	2,5	2,5	2,5	5,5	2,5	2,5	4,5	2,5	2,5	2,5	4,5	2,5	2,5	2,5	4,5	2,5	2,5	4,5	6
900			2,5	2,5	5,5	2,5	2,5	2,5	2,5	2,5	2,5	4,5	2,5	2,5	2,5	4,5	2,5	2,5	4,5	6	2,5	4,5	4,5	8
1.000		2,5	2,5	2,5	5,5	2,5	2,5	4,5	2,5	2,5	2,5	4,5	2,5	2,5	4,5	6	2,5	2,5	4,5	8	2,5	4,5	6	8
1.100		2,5	2,5	2,5	2,5	2,5	2,5	4,5	2,5	2,5	4,5	6	2,5	2,5	4,5	6	2,5	4,5	4,5	8	2,5	4,5	6	8
1.200		2,5	2,5	4,5	2,5	2,5	2,5	4,5	2,5	2,5	4,5	6	2,5	4,5	4,5	8	2,5	4,5	6	8	4,5	6	8	8
1.400		2,5	2,5	4,5	2,5	2,5	4,5	6	2,5	4,5	4,5	8	2,5	4,5	6	8	4,5	4,5	8	8	4,5	8	8	8
1.600		2,5	2,5	6	2,5	2,5	4,5	8	2,5	4,5	6	8	4,5	4,5	8	8	4,5	6	8	8	6	8	8	8
1.800		2,5	4,5	6	2,5	4,5	4,5	8	2,5	4,5	6	8	4,5	6	8	8	4,5	8	8	8	6	8	8	8
2.000		2,5	4,5	8	2,5	4,5	6	8	4,5	6	8	8	4,5	8	8	8	6	8	8	8	8	8	8	8
2.200		4,5	4,5	8		4,5	8	8	4,5	6	8	8	6	8	8	8								
2.400		4,5	6	8		6	8	8	4,5	8	8	8	6	8	8	8								
2.600			6	8			8				8				8									
2.800			8	8			8				8				8									
3.000			8	8			8				8				8									

							HY	GIEN	E ECO									
ALTURA		300			400			500			600			700			900	
CLASE	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
400																		2,5
500												2,5			2,5	5,5	2,5	2,5
600						5,5			2,5			2,5		5,5	2,5	5,5	2,5	2,5
700						2,5			2,5		5,5	2,5		2,5	2,5	5,5	2,5	2,5
800			5,5			2,5		5,5	2,5		2,5	2,5		2,5	2,5	5,5	2,5	4,5
900			2,5	5,5	5,5	2,5		2,5	2,5		2,5	2,5		2,5	2,5	2,5	2,5	4,5
1.000			2,5	5,5	2,5	2,5		2,5	2,5		2,5	2,5	5,5	2,5	4,5	2,5	2,5	4,5
1.100			2,5	5,5	2,5	2,5		2,5	2,5	5,5	2,5	4,5	2,5	2,5	4,5	2,5	4,5	6
1.200		5,5	2,5	5,5	2,5	2,5	5,5	2,5	4,5	2,5	2,5	4,5	2,5	2,5	4,5	2,5	4,5	6
1.400	5,5	2,5	2,5	5,5	2,5	2,5	2,5		4,5	2,5	2,5	4,5	2,5	4,5	6	2,5	4,5	8
1.600		2,5	2,5	5,5	2,5	4,5	2,5		4,5	2,5	4,5	6	2,5	4,5	8	2,5	6	8
1.800		2,5	4,5	2,5	2,5	4,5	2,5		6	2,5	4,5	8	2,5	4,5	8	4,5	8	8
2.000		2,5	4,5	2,5	2,5	6	2,5	4,5	8	2,5	4,5	8	2,5	6	8	4,5	8	8
2.200		2,5	4,5		4,5	6	2,5	4,5	8	2,5	6	8						
2.400		2,5	4,5		4,5	8	2,5	4,5	8	2,5	6	8						
2.600		4,5	6		4,5			6			8							
2.800		4,5	6		4,5			6			8							
3.000		4,5	8		6			8			8							

Los preajustes que se aplicarán a las válvulas instaladas se determinan a partir de las siguientes condiciones:

- emisión de calor a 70/55/20 °C ($\Delta t = 15$ °C)
- presión diferencial $\Delta p = 100 \text{ mbar}$
- diferencia de control 1K

Si las condiciones difieren, la válvula se puede ajustar manualmente y con precisión (o sustituir, llegado el caso) usando las tablas de ajustes 4368 y 4369 (con la clave de ajuste art. T1622).

En sistemas mono-tubo, la válvula se debe dejar abierta al máximo, en la posición 8.

EJEMPLO DE AJUSTE MANUAL

Válvula 4369

5,5

MÁX.	1K DIFERE	NCI	A C)E (ON	ITR	OL																								
Emisić radiad	on del lor Q [W]	200	250	300	400	500	009	700	800	006	1.000	1.200	1.400	1.600	1.800	2.000	2.200	2.400	2.600	2.800	3.000	3.200	3.400	3.600	3.800	4.000	4.800	5.300	6.500	6.800	7.200
∆t [K]	∆p [mbar]	Va	lor	ajus	ste																										
10	50	4	5	7																											
	100	2	3	5	6	8																									
	150	1	2	3	5	7	8																								
15	50	2	3	4	6	8																									
	100	1	1	2	4	5	6	8																							
	150	1	1	1	2	4	5	6	7	8																					
20	50	1	1	2	4	5	7	8																							
	100	1	1	1	2	3	5	5	6	8	8																				
	150	1	1	1	1	2	3	4	5	5	7	8																			
40	50		1	1	1	1	2	3	4	5	5	7	8																		
	100			1	1	1	1	1	2	3	3	5	5	6	8	8															
	150				1	1	1	1	1	1	2	3	4	5	5	7	8	8													

MÁX.	2K DIFERE	NCI	A C	DE C	ON	TR	OL																								
Emisić radiad	ón del lor Q [W]	200	250	300	400	500	009	700	800	006	1.000	1.200	1.400	1.600	1.800	2.000	2.200	2.400	2.600	2.800	3.000	3.200	3.400	3.600	3.800	4.000	4.800	5.300	6.500	6.800	7.200
∆t [K]	∆p [mbar]	Va	lor	ajus	ste																										
10	50	3	5	6	7	8	8																								
	100	1	3	4	5	6	7	8	8	8																					
	150	1	1	3	4	6	6	7	7	8	8																				
15	50	1	3	3	5	6	7	7	8	8	8																				
	100	1	1	1	3	5	5	6	6	7	8	8	8																		
	150	1	1	1	1	3	4	5	6	6	6	7	8	8																	
20	50	1	1	1	3	5	6	6	7	7	8	8																			
	100	1	1	1	1	3	4	5	5	6	6	7	8	8	8																
	150		1	1	1	1	3	3	4	5	6	6	7	7	8	8	8														
40	50		1	1	1	1	1	3	3	4	5	6	6	7	7	8	8	8	8												
	100				1	1	1	1	1	3	3	4	5	5	6	6	6	7	7	8	8	8	8	8	8						
	150					1	1	1	1	1	1	3	3	4	5	6	6	6	6	7	7	7	8	8	8	8					

 $Q = Emisi\'{o}n de calor$

 $\Delta p = Presión diferencial$

 Δt = Diferencia de temperatura sobre el radiador

100 mbar = 10 kPa = 1mWS

EJEMPLO:

Objetivo: valor de ajuste

■ Real: Novello ECO: Tipo 11 - H 900 x L 500 debe funcionar a: 80/70/20 °C

pérdida de presión $\Delta p = 50$ mbar

• válvula preinstalada: **amarilla 4369** - preajustada a 5,5

capacidad a 80/70/20 °C 769 Watt

 $\Delta t = 10 \, ^{\circ}\text{C} (= 80-70)$

- Según la tabla anterior: rango de regulación 1K (tabla superior): sin regulación posible
- Según la tabla anterior: rango de regulación 2K (tabla superior): sin regulación posible

• la válvula amarilla 4369 se debe sustituir por la blanca, roja, negra o azul 4368 y ajustarse a: rango de regulación 1K: ajustar en la posición **"5"**

rango de regulación 2K: ajustar en la posición **"3"**

EJEMPLO DE AJUSTE MANUAL

Válvulas 4368

MAX.	1K DIFERE	NC	ΑC	DE C	ON	TR	OL																								
Emisid		200	250	300	400	500		700	800	006	1.000	1.200	1.400	1.600	1.800	2.000	2.200	2.400	2.600	2.800	3.000	3.200	3.400	3.600	3.800	4.000	4.800	5.300	6.500	008.9	7.200
∆t [K]	∆p [mbar]	Va	lor	ajus	ste																										
10	50	1	1	1	2	3	3	4	5	6	7																				
	100	1	1_	1	1-	2	2	3	3	4	4	5	7																		
	150		1	1	1	1	2	2	2	3	3	4	5	6	8																
15	50	1	1	1	1	2	2	2	3	3	4	5	6																		
	100			1	1	1	1	2	2	2	2	3	4	5	5	6	8														
	150				1	1	1	1	1	2	2	2	3	3	4	5	5	6	7												
20	50			1	1	1	1	2	2	2	3	3	4	5	6	7															
	100				1	1	1	1	1	2	2	2	3	3	4	4	5	5	6	7											
	150					1	1	1	1	1	1	15	2	2	3	3	4	4	5	5	6	6	7	8							
40	50						1	1	1	1	1	1	2	2	2	3	3	3	4	4	5	5	5	6	6	7					
	100								1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	4	4	4	5	6			
	150									1	1	1	1	\1	1	1	2	2	2	2	2	2	2	3	3	3	4	5	6	7	8

MAX.	2K DIFERE	NCI	A C)E (ON	TR	OL																								
Emisić radiad	on del lor Q [W]	200	250	300	400	200	009	700	800	006	1.000	1.200	1.400	1.600	1.800	2.000	2.200	2.400	2.600	2.800	3.000	3.200	3.400	3.600	3.800	4.000	4.800	5.300	6.500	6.800	7.200
∆t [K]	∆p [mbar]	Va	lor	aju	ste																										
10	50	1	1	1	2	2	3	3	3	4	5	5	6	7	8																
	100	1	1	1	1	2	2	2	2	3	3	4	5	5	6	6	7	X	8												
	150		1	1	1	1	2	2	2	2	3	3	4	4	5	5	6	6	7	7	8	8									
15	50		1	1	1	1	2	2	2	3	3	3	4	5	5	6	6	7	8	8											
	100			1	1	1	1	1	2	2	2	2	3	3	4	4	5	5	6	6	6	7	7	7	8	8					
	150				1	1	1	1	1	2	2	2	2	3	3	3	4	4	5	5	5	6	6	6	6	7	8				
20	50			1	1	1	1	2	2	2	2	3	3	3	4	5	5	5	6	6	X	7	7	8	8						
	100				1	1	1	1	1	1	2	2	2	2	3	3	3	4	4	5	5	\5	5	6	6	6	7	8			
	150					1	1	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	6	7	8		
40	50						1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	5	5	6	7	7	8
	100								1	1	1	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	4	4	5	5	6
	150										1	1	1	1	1	1	1	2	2	2	2	2	2	12	2	3	3	3	4	4	5

Q = Emisión de calor

 $\Delta p = Presión diferencial$

 Δt = Diferencia de temperatura sobre el radiador

100 mbar = 10 kPa = 1 mWS

EJEMPLO:

Objetivo: valor de ajuste

Medido: Novello ECO: Tipo 22 - H 500 x L 1400 debe funcionar a:

60/40/20 °C pérdida de presión Δ p = 50 mbar

• válvula preinstalada: roja 4368 - preajustada a 4,5

capacidad a 60/40/20 °C
 1.008 Watt

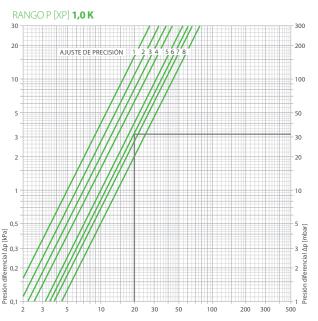
 $\Delta t = 20 \, ^{\circ}\text{C} (= 60\text{-}40)$

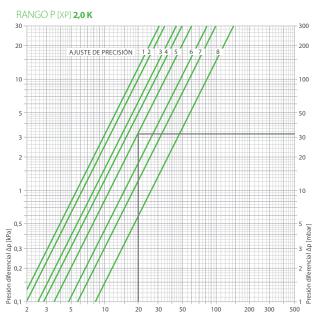
■ Solución: valor de preajuste conforme a la tabla 4368:

• rango de regulación 1K: ajustar en la posición "3"

• rango de regulación 2K: ajustar en la posición **"2"**

4368 **3 4368**


DIAGRAMA DE PÉRDIDA DE PRESIÓN


Válvula de ajuste de precisión (Art. 4369)

5,5

RADIADORES DE VÁLVULAS SIN ACCESORIOS DE CONEXIÓN

Información procedente de Heimeier

	ilvula sin conexión inferior la válvula termostática con				TE DE					Temperatura máx. operativa	Presión máx. operativa		ncial máx. adm la está cerrada .	
preajuste del regu			cuc		ermo			Valu		TB*	РВ	Regulador	EMOT/NC EMOtec/NC	EMO T/NO
		1	2	3	4	5	6	7	8	[°C]	[bar]	termostático	EMO 1/3 EMO EIB/LON	EMOtec/NO
rango p xp 1,0 K	Valor Kv [m³/h]	0,05	0,06	0,07	0,08	0,10	0,11	0,12	0,14					
rango p xp 2,0 K	Valor Kv [m³/h]	0,06	0,06	0,08	0,09	0,11	0,15	0,18	0,26	120	10	4.0	2.7	3,5
	Valor Kv [m³/h]	0,06	0,07	0,08	0,10	0,12	0,17	0,25	0,50		10	4,0	۷,/	5,5
	Tolerancia de caudal ± [%]	42	42	37	36	35	32	30	10					

^{*} Con tapón protector o actuador 100 ℃

EJEMPLO:

Objetivo: valor de ajuste

Medido: · capacidad: Q = 350 Watt
 · diferencia de temperatura: Δt = 15 K (65-50 °C)

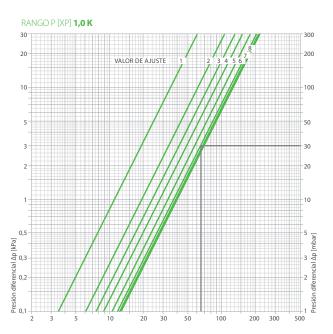
nárdida do presión radiador do válvula: $\Delta r = 13 \text{ K}(03.30)$

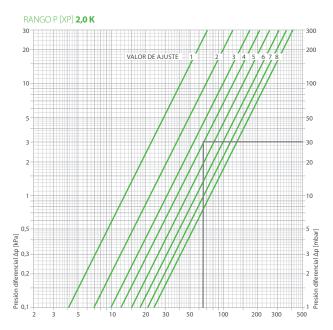
• pérdida de presión radiador de válvula: $\Delta p_v = 32 \text{ mbar}$

Solución: caudal: $m = \frac{Q}{c \times \Delta t} = \frac{350}{1,163 \times 15} = 20 \text{ kg/h}$

valor de ajuste según el diagrama

• en el rango p 1,0 K: 6


• en el rango p 2,0 K: 4


DIAGRAMA DE PÉRDIDA DE PRESIÓN

Válvula estándar (Art. 4368)

RADIADORES DE VÁLVULAS SIN ACCESORIOS DE CONEXIÓN

Información procedente de Heimeier

	Ilvula sin conexión inferior la válvula termostática con				E DE					Temperatura máx. operativa	Presión máx. operativa		ncial máx. adm la está cerrada	
	lador termostático				ermo			• a.a.		TB*	PB	Regulador termostá	EMOT/NC EMOtec/NC	EMO T/NO
		1	2	3	4	5	6	7	8	[°C]	[bar]	tico	EMO 1/3 EMO EIB/LON	EMOtec/NO
rango p xp 1,0 K	Valor Kv [m³/h]	0,12	0,19	0,24	0,28	0,33	0,37	0,39	0,40					
rango p xp 2,0 K	Valor Kv [m³/h]	0,13	0,22	0,31	0,38	0,47	0,57	0,66	0,75	120	10	4.0	2.7	2.5
	Valor Kv [m³/h]	0,16	0,27	0,38	0,43	0,65	0,98	1,23	1,43		10	4,0	۷,/	3,5
	Tolerancia de caudal ± [%]	40	30	25	23	17	15	12	10					

^{*}Con tapón protector o actuador 100°C

EJEMPLO:

Objetivo: valor de ajuste

• pérdida de presión radiador de válvula: $\Delta p_v = 30 \text{ mbar}$

Solución: caudal: $m = \frac{Q}{c \times \Delta t} = \frac{1.135}{1,163 \times 15} = 65 \text{ kg/h}$

valor de ajuste según el diagrama

• en el rango p 1,0 K: **6**

• en el rango p 2,0 K: 4

IDEAL PARA ENERGÍAS RENOVABLES

El radiador ECO se puede combinar a la perfección con sistemas de baja temperatura de todo tipo, como bombas de calor, paneles solares e instalaciones de biomasa.

Se puede conectar a una caldera modulante de gas o de gasóleo y es ideal para instalaciones de calefacción individuales y colectivas.

Si se tiene en cuenta el reducido número de días al año en que los radiadores deben funcionar **al máximo de su capacidad**, es suficiente un calentamiento parcial con un caudal de entre un 10 y un 30 % para calentar una habitación durante el 90-95 % de los periodos en los que es necesaria la calefacción. Durante este periodo, la temperatura superficial media del radiador será más baja.

Con un radiador tradicional con una temperatura superficial inferior a 40 °C se puede alcanzar la temperatura deseada en la habitación, pero la sensación no es tan agradable. Gracias al caudal en serie, el radiador ECO consigue una **temperatura superficial más alta del panel delantero**, dando como resultado hasta un 50 % **más de calor radiante**.

Y es precisamente esta mayor radiación la que ofrece esa sensación tan confortable, incluso con caudales más bajos. Esto cobra especial importancia en el momento de sustituir un sistema de calefacción obsoleto que funciona a altas temperaturas por uno más moderno que opere a temperaturas más bajas y que utilice fuentes de energía renovable, como bombas de calor o la energía solar.

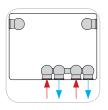
Por lo tanto, los radiadores ECO son perfectos para instalaciones de calefacción con sistemas de alta temperatura transformados en otros de baja temperatura, como las bombas de calor.

OTRAS VENTAJAS

Aparte de las propiedades exclusivas que ya se han mencionado, el radiador ECO ofrece muchos otros beneficios para el usuario final, el instalador y el distribuidor.

VÁLVULA INSTALABLE TANTO A LA IZQUIERDA COMO A LA DERECHA

La válvula se puede instalar a la derecha o a la izquierda del radiador ECO sin necesidad de modificar la tubería de entrada y de retorno. Sin números de artículo distintos, sin stock diferenciado, sin costes adicionales por modelos a la izquierda y, al mismo tiempo, con los mismos plazos de entrega reducidos de un radiador con la válvula a la derecha.



CONEXIÓN CENTRAL

En el centro del radiador ECO hay una conexión macho de ¾" Eurocono. De este modo, el lugar de conexión ya no depende de la longitud del radiador. La ventaja principal supone que se pueden instalar las tuberías en una fase temprana del proyecto sin necesidad de conocer las dimensiones del radiador. Además, cuenta con una conexión adicional hembra de ½" en la parte inferior derecha.

ENTRADA SIEMPRE A LA IZQUIERDA

MÁS FÁCIL DE COMPROBAR

Gracias a nuestra plantilla de montaje, la instalación del sistema de tuberías se puede probar completamente sin necesidad de que estén colocados los radiadores.

CONEXIÓN RÁPIDA

La conexión central macho de ¾" Eurocono permite conectar las tuberías directamente al radiador ECO sin acoplamiento intermedio. El riesgo de fugas disminuye y se acelera el tiempo de instalación.

OPCIONES DE CONEXIÓN (\$\frac{\pi}{2}\) TANTO PARA REFORMAS COMO PARA OBRA NUEVA

Este radiador ECO cuenta con una conexión hembra de ½" adicional a la derecha diseñada específicamente para el mercado de reformas, así como la conexión central macho de ¾" Eurocono, de uso frecuente en proyectos de obra nueva.

STELRAD NOVELLO ECO PRESENTACIÓN GENERAL

Radiador con válvula de baja temperatura con circulación en serie, conexión inferior tanto en el centro como en el lateral y una válvula preajustada que se puede instalar a la derecha o a la izquierda.

- El radiador ECO es el único que cuenta con certificado ISO de equivalencia controlada que permite alcanzar una reducción de nivel EPC/E. Radiador de válvula indicado especialmente para bajas temperaturas con caudal en serie por paneles (el panel de la parte delantera es por donde circula primero el agua). Esto genera una elevada eficiencia energética, una radiación máxima (incluso en regímenes de baja temperatura), un calentamiento rápido y una disminución de la pérdida de calor por el lado de la pared. Optimizado conforme a los requisitos de las normas EN442, EN12831 y DIN 4701-10.
- Garantía de calidad conforme a la norma ISO 9001. Emisión de calor comprobada conforme a la norma EN442. Calidad del producto certificada por RAL.

ACABADO: Rejilla superior y paneles laterales

PREINSTALADO: Válvula Heimeier 4368 o 4369 preajustadas, válvula de purgado ECO y tapones

VÁLVULA: La válvula regulable integrada (sin cabezal termostático) va preinstalada en el lado derecho,

tiene la certificación CEN, ha sido sometida a pruebas conforme a la norma EN215 y es compatible con cabezales termostáticos M30 x 1,5 mm. En los tipos 21, 22 y 33 la válvula se puede instalar a la izquierda, mientras que para el tipo 11 existe un modelo a la izquierda

que está disponible por encargo.

El ajuste de la válvula se realiza en fábrica de acuerdo con el tamaño del radiador. Este

preajuste garantiza un rendimiento óptimo del radiador.

El ajuste de fábrica para sistemas de dos tuberías también es válido para los de una sola

tubería (siempre que se modifique el ajuste de la válvula a la posición 8).

INCLUYE: Soportes VDI (tipo Monclac), tornillos y tacos, instrucciones de montaje

CONEXIONES: 2 conexiones centrales macho de ¾" Eurocono, 2 conexiones hembra de ½"

PERFILES DE FIJACIÓN: 2 pares de perfiles de fijación hasta 1.600 mm y 3 pares a partir de 1.800 mm

EMBALAJE: Todos los radiadores van firmemente embalados en cartón de alta calidad y plastificados.

Las características del radiador figuran en la etiqueta: tipo, altura y longitud.

GARANTÍA: 10 años, siempre y cuando se respeten las instrucciones de instalación y se cumplan las

condiciones de la garantía de Stelrad.

PROCESO DE PINTADO: Todos los radiadores se desengrasan, se fosfatan, se imprimen mediante catafóresis y se

recubren con pintura en polvo blanco Stelrad 9016 estándar.

COLOR: Blanco Stelrad 9016 + posibilidad de otros 35 colores Stelrad o 200 colores RAL

CONTADORES DE Indicados sin ningún tipo de limitación para contadores de energía térmica, tanto eléctricos ENERGÍA TÉRMICA: como según el principio de evaporación (de conformidad con las normas EN834 y 835).

PRESIÓN MÁX. OPERATIVA: 10 bar (probado a 13 bar)

TEMPERATURA MÁX.

OPERATIVA: 110 °C

CONFORMIDAD: Conforme a la norma EN442

GARANTÍA DE CALIDAD: RAL y NF

DECLARACIÓN DE

EQUIVALENCIA: ISO y Kiwa
TIPOS: 11 / 21 / 22 / 33

ALTURA: 300 / 400 / 500 / 600 / 700 / 900 mm

LONGITUD: 400 – 3.000 mm

FONDO: 61 / 77 / 100 / 158 mm

Presentación por tipo*

- Factor de cálculo por metro de longitud del radiador a 75/65/20 °C conforme a la norma EN442
- Comparación característica: $\Phi = K_{M} \times \Delta T^{n}$

ALTURA (mm)		TIPO 11	TIPO 21	TIPO 22	TIPO 33
	W	509	744	933	1.347
	kg	9,31	14,30	16,50	24,70
300	I	1,89	3,80	3,70	5,20
	m ²	2,09	2,44	3,51	5,26
	n	1,32	1,28	1,31	1,33
	W	676	927	1.173	1.686
	kg	12,78	18,83	21,83	32,63
400	I	2,34	4,80	4,77	6,80
	m ²	2,95	3,37	4,92	7,38
	n	1,31	1,29	1,30	1,33
	W	833	1.107	1.401	2.007
	kg	16,24	23,37	27,17	40,57
500	I	2,80	5,80	5,83	8,40
	m ²	3,80	4,31	6,33	9,49
	n	1,30	1,30	1,30	1,33
	W	980	1.287	1.617	2.313
	kg	19,70	27,90	32,50	48,50
600	I	3,25	6,80	6,90	10,00
	m ²	4,66	5,24	7,74	11,61
	n	1,29	1,30	1,30	1,33
	W	1.117	1.467	1.824	2.607
	kg	22,90	32,70	38,07	57,00
700	I	3,77	7,57	7,63	11,25
	m ²	5,51	6,18	9,15	13,72
	n	1,29	1,31	1,30	1,33
	W	1.360	1.836	2.220	3.180
	kg	29,30	42,30	49,20	74,00
900	I	4,80	9,10	9,10	13,75
	m ²	7,22	8,05	11,97	17,96
	n	1,29	1,32	1,30	1,33

W = emisión por metro
kg = peso por metro
l = contenido de agua por metro
m² = superficie por metro
n = exponente

51 100 158 143 143

Tipo 22

Tipo 33

Tipo 21

Tipo 11

^{*} El fabricante se reserva el derecho a modificar los productos sin previo aviso.

Presentación según emisión (en vatios, conforme a la norma EN442)

Altura		300	mm			400	mm			500	mm	
Tipo	11	21	22	33	11	21	22	33	11	21	22	33
W/m EN442 55/45/20°C	259 W	387 W	479 W	684 W	346 W	480 W	602 W	856 W	428 W	571 W	720 W	1.019 V
400	204 152	298 224	373 279	539 401	270 202	371 278	469 351	674 501	333 249	443 332	560 419	803 597
500	255 190	372 279	467 349	674 501	338 252	464 348	587 438	843 627	417 311	554 415	701 524	1.004 746
600	305 227	446 335	560 418	808 601	406 303	556 417	704 526	1.012 752	500 374	664 497	841 628	1.204 895
700	356 265	521 391	653 488	943 701	473 353	649 487	821 614	1.180 878	583 436	775 580	981 733	1.405 1.045
800	407 303	595 447	746 558	1.078 801	541 404	742 556	938 701	1.349 1.003	666 498	886 663	1.121 838	1.606 1.194
900	458 341	670 503	840 628	1.212 901	608 454	834 626	1.056 789	1.517 1.128	750 561	996 746	1.261 943	1.806 1.343
1.000	509 379	744 559	933 697	1.347 1.002	676 504	927 695	1.173 877	1.686 1.254	833 623	1.107 829	1.401 1.047	2.007 1.492
1.100	560 417	818 615	1.026 767	1.482 1.102	744 555	1.020 765	1.290 964	1.855 1.379	916 685	1.218 912	1.541 1.152	2.208 1.642
1.200	611 455	893 671	1.120 837	1.616 1.202	811 605	1.112 834	1.408 1.052	2.023 1.504	1.000 748	1.328 995	1.681 1.257	2.408 1.791
1.400	713 531	1.042 783	1.306 976	1.886 1.402	946 706	1.298 974	1.642 1.227	2.360 1.755	1.166 872	1.550 1.161	1.961 1.466	2.810 2.089
1.600		1.190 894	1.493 1.116	2.155 1.603	1.082 807	1.483 1.113	1.877 1.403	2.698 2.006	1.333 997	1.771 1.327	2.242 1.676	3.211 2.388
1.800		1.339 1.006	1.679 1.255	2.425 1.803	1.217 908	1.669 1.252	2.111 1.578	3.035 2.257	1.499 1121	1.993 1.492	2.522 1.885	3.613 2.686
2.000		1.488 1118	1.866 1.394	2.694 2.003	1.352 1.009	1.854 1.391	2.346 1.753	3.372 2.507	1.666 1.246	2.214 1.658	2.802 2.095	4.014 2.985
2.200		1.637 1.230	2.053 1.534	2.963 2.203		2.039 1.530	2.581 1.929	3.709 2.758	1.833 1.371	2.435 1.824	3.082 2.304	4.415 3.283
2.400		1.786 1.342	2.239 1.673	3.233 2.404		2.225 1.669	2.815 2.104	4.046 3.009	1.999 1.495	2.657 1.990	3.362 2.513	4.817 3.582
2.600			2.426 1.813	3.502 2.604			3.050 2.279				3.643 2.723	
2.800			2.612 1.952	3.772 2.804			3.284 2.455				3.923 2.932	
3.000			2.799	4.041 3.005			3.519 2.630				4.203 3.142	

Altura		600	mm		700 mm				900 mm			
Tipo	11	21	22	33	11	21	22	33	11	21	22	33
W/m EN442 55/45/20°C	507 W	662 W	831 W	1.174 W	577 W	751 W	938 W	1.323 W	703 W	933 W	1.142 W	1.615 V
400	392	515	647	925	447	587	730	1.043	544	734	888	1.272
	294	385	484	688	335	438	546	776	408	547	664	946
500	490	644	809	1.157	559	734	912	1.304	680	918	1.110	1.590
	367	481	604	860	419	548	682	969	510	683	830	1183
600	588	772	970	1.388	670	880	1.094	1.564	816	1.102	1.332	1.908
	441	577	725	1.032	502	657	818	1.163	612	820	996	1.419
700	686	901	1.132	1.619	782	1.027	1.277	1.825	952	1.285	1.554	2.226
	514	674	846	1.204	586	767	955	1.357	714	956	1.162	1.656
800	784	1.030	1.294	1.850	894	1.174	1.459	2.086	1.088	1.469	1.776	2.544
	588	770	967	1.376	670	876	1.091	1.551	816	1.093	1.328	1.892
900	882	1.158	1.455	2.082	1.005	1.320	1.642	2.346	1.224	1.652	1.998	2.862
	661	866	1.088	1.548	754	986	1.228	1.745	917	1.230	1.495	2.129
1.000	980	1.287	1.617	2.313	1.117	1.467	1.824	2.607	1.360	1.836	2.220	3.180
	735	962	1.209	1.720	837	1.095	1.364	1.939	1.019	1.366	1.661	2.365
1.100	1.078	1.416	1.779	2.544	1.229	1.614	2.006	2.868	1.496	2.020	2.442	3.498
	808	1.059	1.330	1.892	921	1.205	1.500	2.133	1.121	1.503	1.827	2.602
1.200	1.176	1.544	1.940	2.776	1.340	1.760	2.189	3.128	1.632	2.203	2.664	3.816
	881	1.155	1.451	2.064	1.005	1.314	1.637	2.327	1.223	1.640	1.993	2.838
1.400	1.372	1.802	2.264	3.238	1.564	2.054	2.554	3.650	1.904	2.570	3.108	4.452
	1.028	1.347	1.693	2.408	1.172	1.533	1.910	2.714	1.427	1.913	2.325	3.311
1.600	1.568	2.059	2.587	3.701	1.787	2.347	2.918	4.171	2.176	2.938	3.552	5.088
	1.175	1.540	1.934	2.752	1.340	1.752	2.182	3.102	1.631	2.186	2.657	3.784
1.800	1.764	2.317	2.911	4.163	2.011	2.641	3.283	4.693	2.448	3.305	3.996	5.724
	1.322	1.732	2.176	3.096	1.507	1.971	2.455	3.490	1.835	2.459	2.989	4.257
2.000	1.960	2.574	3.234	4.626	2.234	2.934	3.648	5.214	2.720	3.672	4.440	6.360
	1.469	1.925	2.418	3.440	1.674	2.190	2.728	3.878	2.039	2.733	3.321	4.730
2.200	2.156 1.616	2.831 2.117	3.557 2.660	5.089 3.784								
2.400	2.352 1.763	3.089 2.310	3.881 2.902	5.551 4.128								
2.600			4.204 3.143									
2.800			4.528 3.385									
3.000			4.851 3.627									

STELRAD HYGIENE ECO PRESENTACIÓN GENERAL

Radiador con válvula de baja temperatura con circulación en serie, diseñado especialmente para entornos en los que la higiene y la seguridad sean particularmente importantes, con conexión inferior tanto en el centro como en el lateral y una válvula preajustada que se puede instalar a la derecha o a la izquierda

- Radiador de válvula indicado especialmente para bajas temperaturas con caudal en serie por paneles (el panel de la parte delantera es por donde circula primero el agua). Esto genera una elevada eficiencia energética, una radiación máxima (incluso en regímenes de baja temperatura), un calentamiento rápido y una disminución de la pérdida de calor por el lado de la pared. Optimizado conforme a los requisitos de las normas EN442, EN12831 y DIN 4701-10.
- Garantía de calidad conforme a la norma ISO 9001. Emisión de calor comprobada conforme a la norma EN442. Calidad del producto certificada por RAL.

ACABADO: Sin rejilla superior ni paneles laterales

PREINSTALADO: Válvula Heimeier 4368 o 4369 preajustadas, válvula de purgado ECO y tapones

VÁLVULA: La válvula regulable integrada (sin cabezal termostático) va preinstalada en el lado derecho,

> tiene la certificación CEN, ha sido sometida a pruebas conforme a la norma EN215 y es compatible con cabezales termostáticos M30 x 1,5 mm. En los tipos 20 y 30 la válvula se puede instalar a la izquierda, mientras que para el tipo 10 existe un modelo a la izquierda

que está disponible por encargo.

El ajuste de la válvula se realiza en fábrica de acuerdo con el tamaño del radiador. Este preajuste garantiza un rendimiento óptimo del radiador. El ajuste de fábrica para sistemas de dos tuberías también es válido para los de una sola tubería (siempre que se modifique

el ajuste de la válvula a la posición 8).

INCLUYE: Instrucciones de montaje

CONEXIONES: 2 conexiones centrales macho de 34" Euroconus, 2 conexiones hembra de 1/2" PERFILES DE FIJACIÓN: 2 pares de perfiles de fijación hasta 1.600 mm y 3 pares a partir de 1.800 mm

EMBALAJE: Todos los radiadores van firmemente embalados en cartón de alta calidad y plastificados.

Las características del radiador figuran en la etiqueta: tipo, altura y longitud.

GARANTÍA: 10 años, siempre y cuando se respeten las instrucciones de instalación y se cumplan las

condiciones de la garantía de Stelrad.

PROCESO DE PINTADO: Todos los radiadores se desengrasan, se fosfatan, se Imprimen mediante catafóresis y se

recubren con pintura en polvo blanco Stelrad 9016 estándar.

COLOR: Blanco Stelrad 9016 + posibilidad de otros 35 colores Stelrad o 200 colores RAL

CONTADORES DE Indicados sin ningún tipo de limitación para contadores de energía térmica, tanto eléctricos **ENERGÍA TÉRMICA:** como según el principio de evaporación (de conformidad con las normas EN834 y 835).

PRESIÓN MÁX. OPERATIVA: 10 bar (probado a 13 bar)

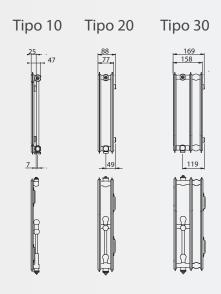
TEMPERATURA MÁX.

OPERATIVA: 110°C

CONFORMIDAD: Conforme a la norma EN442

GARANTÍA DE CALIDAD: RAL e Hygiene **TIPOS:** 10/20/30

ALTURA: 300 / 400 / 500 / 600 / 700 / 900 mm


LONGITUD: 400 - 3.000 mm **FONDO:** 47 / 77 / 158 mm

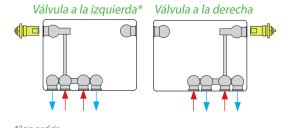
Presentación por tipo

- Factor de cálculo por metro de longitud del radiador a 75/65/20 °C conforme a la norma EN442
- Comparación característica: $\Phi = K_M \times \Delta T^n$

ALTURA (mm)		TIPO 10	TIPO 20	TIPO 30
	W	338	585	867
	kg	6,17	11,57	17,80
300	I	1,89	3,71	5,50
	m²	0,68	1,37	2,04
	n	1,28	1,27	1,30
	W	430	732	1.074
	kg	8,22	15,35	23,27
400	I	2,34	4,71	7,07
	m²	0,91	1,83	2,73
	n	1,29	1,28	1,30
	W	521	879	1.275
	kg	10,28	19,12	28,73
500	I	2,80	5,70	6,83
	m ²	1,14	2,28	3,42
	n	1,30	1,28	1,30
	W	610	1.023	1.470
	kg	12,33	22,90	34,20
600	I	3,25	6,70	10,20
	m ²	1,37	2,74	4,11
	n	1,31	1,29	1,31
	W	699	1.167	1.659
	kg	14,19	26,83	40,10
700	I	3,77	7,57	11,33
	m ²	1,60	3,20	4,79
	n	1,32	1,29	1,31
	W	877	1.458	2.034
	kg	17,90	34,70	51,90
900	I	4,80	9,30	13,60
	m²	2,06	4,12	6,17
	n	1,33	1,30	1,32

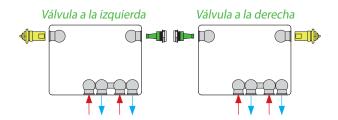
W = emisión por metro
kg = peso por metro
l = contenido de agua por metro
m² = superficie por metro
n = exponente

Presentación según emisión (en vatios, conforme a la norma EN442)

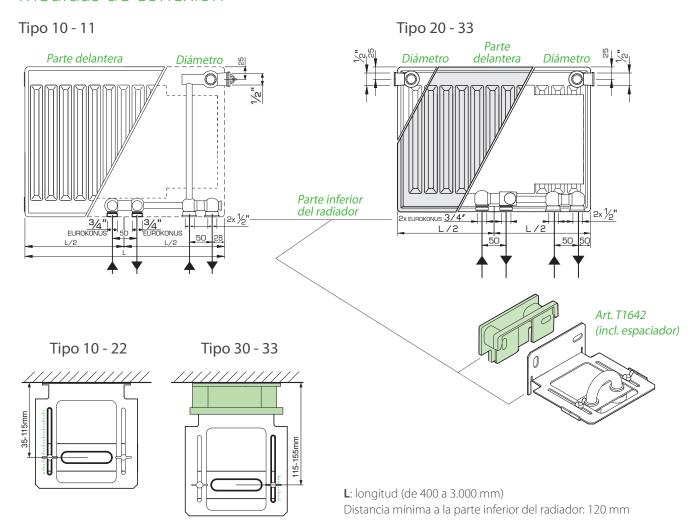

Altura		300 mm		400 mm			500 mm		
Tipo	10	20	30	10	20	30	10	20	30
W/m EN442 55/45/20 °C	176 W	306 W	447 W	222 W	381 W	553 W	268 W	457 W	655 W
400	135 102	234 176	347 260	172 129	293 220	430 321	208 156	352 264	510 381
500	169 127	293 220	434 325	215 161	366 275	537 402	261 195	440 330	638 477
600	203 152	351 264	520 389	258 193	439 330	644 482	313 234	527 396	765 572
700	237 178	410 308	607 454	301 226	512 385	752 562	365 273	615 462	893 667
800	270 203	468 352	694 519	344 258	586 440	859 643	417 312	703 528	1.020 763
900	304 228	527 396	780 584	387 290	659 496	967 723	469 351	791 594	1.148 858
1.000	338 254	585 441	867 649	430 322	732 551	1.074 804	521 389	879 660	1.275 953
1.100	372 279	644 485	954 714	473 354	805 606	1.181 884	573 428	967 726	1.403 1.049
1.200	406 305	702 529	1.040 779	516 387	878 661	1.289 964	625 467	1.055 792	1.530 1.144
1.400	473 355	819 617	1.214 909	602 451	1.025 771	1.504 1.125	729 545	1.231 924	1.785 1.334
1.600		936 705	1.387 1.039	688 516	1.171 881	1.718 1.286	834 623	1.406 1.056	2.040 1.525
1.800		1.053 793	1.561 1.168	774 580	1.318 991	1.933 1.446	938 701	1.582 1.189	2.295 1.716
2.000		1.170 881	1.734 1.298	860 644	1.464 1.101	2.148 1.607	1.042 779	1.758 1.321	2.550 1.906
2.200		1.287 969	1.907 1.428		1.610 1.211	2.363 1.768	1.146 857	1.934 1.453	2.805 2.097
2.400		1.404 1.057	2.081 1.558		1.757 1.321	2.578 1.928	1.250 935	2.110 1.585	3.060 2.288
2.600		1.521 1.145	2.254 1.688		1.903 1.431			2.285 1.717	
2.800		1.638 1.234	2.428 1.818		2.050 1.542			2.461 1.849	
3.000		1.755 1.322	2.601 1.947		2.196 1.652			2.637 1.981	

Altura	600 mm			700 mm			900 mm		
Tipo	10	20	30	10	20	30	10	20	30
W/m EN442 55/45/20 °C	312 W	530 W	754 W	356 W	603 W	850 W	444 W	749 W	1.038 W
400	244	409	588	280	467	664	351	583	814
	182	307	439	208	350	495	261	436	606
500	305	512	735	350	584	830	439	729	1.017
	227	384	549	260	437	619	326	545	758
600	366	614	882	419	700	995	526	875	1.220
	273	461	659	312	525	743	391	654	910
700	427	716	1.029	489	817	1.161	614	1.021	1.424
	318	537	769	364	612	867	456	763	1.061
800	488	818	1.176	559	934	1.327	702	1.166	1.627
	364	614	879	417	700	991	521	872	1.213
900	549	921	1.323	629	1.050	1.493	789	1.312	1.831
	409	691	988	469	787	1.115	587	981	1.365
1.000	610	1.023	1.470	699	1.167	1.659	877	1.458	2.034
	455	768	1.098	521	874	1.238	652	1.090	1.516
1.100	671	1.125	1.617	769	1.284	1.825	965	1.604	2.237
	500	844	1.208	573	962	1.362	717	1.199	1.668
1.200	732	1.228	1.764	839	1.400	1.991	1.052	1.750	2.441
	546	921	1.318	625	1.049	1.486	782	1.308	1.819
1.400	854	1.432	2.058	979	1.634	2.323	1.228	2.041	2.848
	637	1.075	1.537	729	1.224	1.734	912	1.526	2.123
1.600	976	1.637	2.352	1.118	1.867	2.654	1.403	2.333	3.254
	728	1.228	1.757	833	1.399	1.982	1.043	1.744	2.426
1.800	1.098	1.841	2.646	1.258	2.101	2.986	1.579	2.624	3.661
	819	1.382	1.977	937	1.574	2.229	1.173	1.962	2.729
2.000	1.220	2.046	2.940	1.398	2.334	3.318	1.754	2.916	4.068
	910	1.535	2.196	1.041	1.749	2.477	1.303	2.180	3.032
2.200	1.342 1.001	2.251 1.689	3.234 2.416						
2.400	1.464 1.092	2.455 1.842	3.528 2.636						
2.600		2.660 1.996							
2.800		2.864 2.149							
3.000		3.069 2.303							

OPCIONES DE CONEXIÓN


Válvula instalable tanto a la izquierda como a la derecha

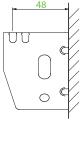
Tipo 10 - 11


Presentación: radiador frontal.

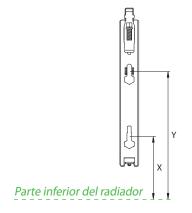
Tipo 20 - 33

PLANTILLA DE MONTAJE

Medidas de conexión



SOPORTES MURALES

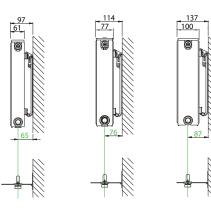

Soporte en ángulo Soportes en J (VDI 6036)

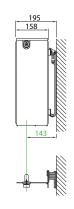
Tipo 10

Tipo 11 - 33

Altura rad. (mm)	X (mm)	Y (mm)	Art. Nr (2 piezas)	Art. Nr (3 piezas)
300	-	140	R509203	R509303
400	103	240	R509204	R509304
500	103	340	R509205	R509305
600	103	440	R509206	R509306
700	103	540	R509207	R509307
900	103	740	R509209	R509309

Tipo 10

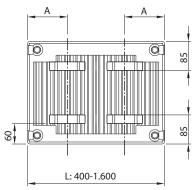


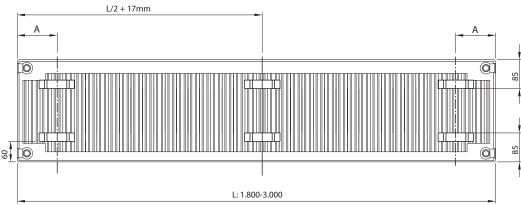

Tipo 11

Tipo 20 - 21

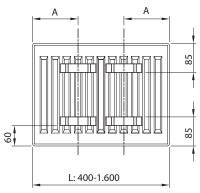
Tipo 22

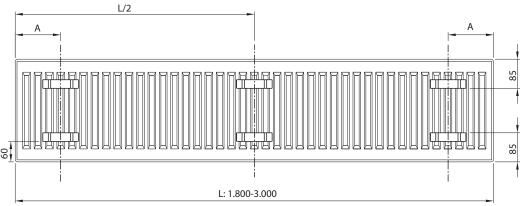
Tipo 30 - 33





POSICIÓN DE LOS PERFILES DE FIJACIÓN





Tipo 10, tipo 20 - 33

L.	A (tipo 10)	A (tipo 20-33)
400	100	133
500-1.100	167	133
1.200-3.000	267	133

[traducción]

CERTIFICADO

Por la presente, Kiwa Gas Technology certifica que el radiador,

Modelo: ECO 22

De : Stelrad

En : Herentals, Bélgica

Permite el siguiente ahorro energético en comparación con un radiador convencional de tipo 22:

- hasta un 8,8 % menos de pérdida de energía por radiación de la placa posterior,
- hasta un 2,93 % de ahorro energético en condiciones estáticas,
- hasta un 10,5 % de ahorro energético en condiciones dinámicas.

Las simulaciones y condiciones en los que se ha registrado este ahorro de energía se describen en los siguientes informes:

- Besparing van de Stelrad ECO radiator onder statische condities.GT-110082.
 Fennema, Edmund (30 de marzo de 2011).
- Besparing van de Stelrad ECO radiator onder dynamische condities.GT-110081.
 Fennema, Edmund (30 de marzo de 2011).

La fuente de la traducción del presente documento es la versión neerlandesa del certificado KIWA, otorgado por KIWA Gas technology, Wilmersdorf 50, 7300 AC Apeldoorn, Países Bajos.

La fuente de la traducción del presente documento es la versión neerlandesa del certificado KIWA, otorgado por KIWA Gas technology, Wilmersdorf 50, 7300 AC Apeldoorn, Paises Bajos.

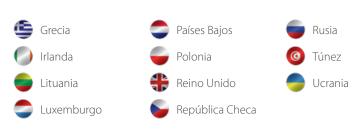
31

SI NECESITA MÁS INFORMACIÓN, PÓNGASE EN CONTACTO CON:

Correo electrónico: info@stelrad.es

Stelrad España

C/ Alfaz del Pi, 3 | Nave 1 | P.I. La Cala | 03509 Finestrat | Alicante T. +34 96 585 40 08



Austria

Alemania

Chipre

